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Abstract The adsorption of helium and neon mixtures
on single-walled carbon nanotubes (SWCNTs) was
investigated at various temperatures (subcritical and
supercritical) and pressures using canonical Monte Carlo
(CMC) simulation. Adsorption isotherms were obtained
at different temperatures (4, 40, 77 and 130 K) and
pressures ranging from 1 to 16 MPa. Separation factors
and isosteric enthalpies of adsorption were also calculat-
ed. Moreover, the adsorption isotherms were obtained at
constant specific temperatures (4 and 40 K) and
pressures (0.2 and 1.0 MPa) as a function of the amount
adsorbed. All of the adsorption isotherms for an
equimolar mixture of helium and neon have a Langmuir
shape, indicating that no capillary condensation occurs.
Both the helium and the neon adsorption isotherms
exhibit similar behavior, and slightly more of the helium
and neon mixture is adsorbed on the inner surfaces of the
SWCNTs than on their outer surfaces. More neon is
adsorbed than helium within the specified pressure range.
The data obtained show that the isosteric enthalpies for
the adsorption of neon are higher than those for helium

under the same conditions, which means that adsorption
of neon preferentially occurs by (15, 15) SWCNTs.
Furthermore, the isosteric enthalpies of adsorption of
both gases decrease with increasing temperature.
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Introduction

Gas adsorption on carbon nanotubes has been the subject
of intense attention from researchers in recent years [1].
Several experimental and theoretical studies have been
performed with the aim of understanding how adsorbed
gases behave on these novel materials. Although many
detailed studies related to the adsorption of small and
spherical molecules on nanotubes have been performed
[2–11], reports on the adsorption of hydrocarbons (with
the exception of methane), especially linear molecules,
have been rather limited [12–16]. Interest in these systems
also stems from their widespread use in the petrochemical
industry. In the past two decades, the problem of clean
energy storage on light nanoporous materials has received
considerable attention due to the well-known “greenhouse
effect” caused by the increase in the concentrations of
atmospheric gas pollutants (CO2, SO2, CH4, CFCs, etc.).
The potential for carbon nanotubes (CNTs) [17, 18] and
other nanomaterials to be used as a means of fuel gas
(mainly H2) storage has been understood since the earliest
days of nanotube research, and numerous efforts directed
at this aim have been conducted through experimental
[19–24] and theoretical [25, 26] techniques, including
computer simulations [27–32]. The adsorption of gases
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onto the inner surfaces of microporous materials forms the
basis for many industrial processes of gas purification and
separation [29–32]. The purification of rare gases is also
of great industrial interest, since there are both medical
and lighting applications of xenon. Mueller et al. [33]
measured the volume-specific uptake of rare gases by
IRMOF-1, and showed that this MOF exhibits preferential
adsorption of xenon over lighter rare gases. In addition,
they found that Cu-BTC, also known as HKUST-1, can be
used to separate xenon from krypton, with a calculated
capacity of more than 60 wt%, thus exceeding the levels
achieved by high-surface-area carbons. Mixtures of rare
gases absorb in the microwave and far-infrared regions of
the spectrum due to the dipoles induced in dissimilar pairs,
for example individual Ar and Ne atoms, during collision-
al interactions [34]. This phenomenon has also been
studied in small atomic clusters [35, 36] using computer
simulation methods. Many theoretical and experimental
attempts have focused on the adsorption of rare gases on
microporous materials [37–42].

In our previous works [43, 44], we studied the
adsorption of gases (O2, N2, and NO) on the outer and
inner surfaces of SWCNTs using DFT calculations. In those
studies, we employed quantum mechanics to investigate gas
adsorption on nanotubes. In addition, we studied the
adsorption of O2 and N2 mixtures on nanotubes using
Monte Carlo simulation [45].

In the thermodynamic state (T and P), the thermal
wavelength of helium and neon is given by Λ=h/
(2πmkT)0.5 (h is the Planck constant, m is the mass of the
helium and neon, and k is the Boltzmann constant). The
value of Λ is such that quantum effects can modify
estimates of thermodynamic properties such as adsorption
obtained by classical simulation. The main purpose of this
work was to obtain an estimate of the helium and neon
adsorption and separation on (15, 15) SWCNTs using
classical canonical Monte Carlo (MC) simulation.

Simulation procedure

The intermolecular interaction was modeled by the
isotropic pairwise additive site-site Lennard–Jones (LJ)
potential:

ϕLJ ðrÞ ¼ 4"ff
s ff
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where εff and σff are the energy and length parameters in
the LJ potential, and r denotes the center-to-center distance.
The subscript ff denotes interactions between two fluid
molecules, and φLJ represents the full LJ potential. The total
potential for interactions between gas molecules and

SWCNTs was calculated using the site–site interaction
method [45]:
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where Nf is the total number of gas molecules, Ncarbon is
the total number of carbon atoms at the wall, and rij is the
center-to-center distance between the gas and the carbon
atoms in the SWCNTs. The subscript fw denotes inter-
actions between a fluid molecule and a carbon wall. Cross
parameters of the unlike pair of particles i and j were
obtained using the Lorentz–Berthelot mixing rules:

"ij ¼ ffiffiffiffiffiffiffi
"i"j

p
s ij ¼ s i þ s j

	 

=2: ð3Þ

Similarly, the LJ potential parameters used to model
nanotube–He and nanotube–Ne interactions were obtained
using Eq. 3. All of the interatomic potential parameters are
given in Table 1. CMC simulations with a fixed number of
gas molecules N, a volume V and a temperature T were
carried out to investigate the adsorption of He and Ne
mixtures on the (15, 15) SWCNTs. Further details of the
method used can be found elsewhere [48, 49].

In this work, a metallic armchair-type SWCNT with a
highly symmetrical structure, i.e., (15, 15) with 1230 atoms
and diameter of 20.197 Å, was selected. The C–C bonds
were assumed to be rigid and fixed at 1.41 Å in length. The
noble gas molecules were taken to be spherically symmetric
and uncharged Lennard–Jones particles, and intermolecular
interactions were modeled only with Van der Waals
potential parameters. We considered gas adsorption at
subcritical and supercritical temperatures (4, 40, 77, and
130 K) for the pressure range 0.5–16 MPa.

Adsorption is usually analyzed as a function of bulk
pressure, so an accurate equation of state (EOS) or
simulations of the bulk phase are needed to convert
chemical potential to bulk pressure. However, an accurate
EOS may not be available, and additional simulations are
not straightforward and may be time-consuming, especially
for the wide range of temperatures, pressures, and compo-
sitions needed for mixtures. For this reason, the ideal gas
assumption of the bulk phase is usually used; however, this
assumption may not be accurate.

Species ε/kB (Κ) σ (Å)

He–He 10.20 2.56

Ne–Ne 36.83 2.79

C–C 28.20 3.40

C–He 16.96 2.98

C–Ne 32.23 3.10

He–Ne 19.38 2.67

Table 1 LJ potential parameters
[46 and 47]
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The common feature shared by all Monte Carlo
simulations is that a Markov chain of molecular config-
urations is produced. Any properties of interest can be
obtained by averaging over this chain. A Monte Carlo
move consists of either the translation of a molecule or the
rotation of a molecule. Two different moves were used to
generate the Markov chain, which is composed of a series
of molecular configurations [48, 49]. The first move is the
displacement of a molecule; a molecule was selected at
random and a random displacement was assigned. The
second move is the rotation of a molecule; a molecule was
selected at random and a random rotation around the center
of mass was assigned. Rotational moves are not necessary
for spherical particles.

The simulation box used (100.0 Å×100.0 Å×100.0 Å)
contained one SWCNT. Simulations with larger boxes
showed that finite-size effects did not exist when the above
boxes were used. Similar to our previous work [45], an
SWCNT was chosen as the adsorbent because it possesses
straight cylindrical pores and has no preferred adsorption
sites in the axial direction [50]. A cutoff radius of 17.0 Å
was applied to the LJ interactions. Periodic boundary
conditions were applied in all three dimensions. For each
state point, CMC simulations consisted of 1×107 steps to
guarantee equilibration, followed by 1×107 steps to sample
the desired thermodynamic properties. In addition, to obtain
a visual picture of the physical adsorption of He and Ne
molecules on the SWCNT, we selected some snapshots of
the configurations in the simulation boxes, as shown in
Fig. 1.

The number of gas molecules in the simulation box (a box
with dimensions of 100.0 Å×100.0 Å×100.0 Å ) can be
easily calculated at a particular temperature and pressure using
the ideal gas equation of state. In the present work, the ideal
gas assumption for the bulk phase was used.

Furthermore, to obtain adsorption isotherms, the gravi-
metric storage capacity (the absolute value of adsorption
per mass of adsorbent), ρW, was calculated as follows:

rW ¼ Ngas:mgas

Ngas:mgas þ NC:mC
; ð4Þ

where Ngas and Nc are the number of gas molecules and
carbon atoms in the simulation box, and mgas and mc

(g mol−1) are the corresponding molar masses, respectively.

Results and discussion

Adsorption isotherms

The gravimetric adsorption capacities of the He and Ne on
the (15, 15) SWCNT [total, inner and outer, according to

Eq. 4] were evaluated by feeding the LJ potential into the
CMC simulation. The adsorption isotherms for He and Ne
at subcritical (4 and 40 K) and supercritical (77 and 130 K)
temperatures were obtained for a constant temperature and
constant SWCNT diameter and length but varying pressure.
The adsorption isotherms of He and Ne obtained at
different temperatures are shown in Figs. 2, 3 and 4. All
of the adsorption isotherms obtained for the He and Ne
mixture were type I (Langmuir shape). An inherent
property of type I isotherms is that adsorption is limited
to the completion of a single monolayer of adsorbate at the
adsorbent surface. Type I isotherms (parabolic behavior) are
observed for the adsorption of gases onto microporous
solids whose pore sizes are not much larger than the
molecular diameter of the adsorbate; completely filling
these narrow pores corresponds to the completion of a
molecular monolayer [51]. Also, when the SWCNT radius
is larger than approximately 2 nm, capillary condensation
occurs when the temperature is sufficiently low, following
the layer-by-layer adsorption of gas molecules onto the
nanotube surface. When the SWCNT diameter is less than

Fig. 1 a–b Snapshots of the CMC simulation box of the SWCNT at a
77 K and b 130 K and under 10 MPa pressure
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about 2 nm, no condensation is observed because the
system becomes essentially one-dimensional [52]. Also, the
contribution of gas–gas repulsion in the second layer is
much larger than the predicted total energy contribution
resulting from attractive forces (van der Waal’s interaction
of the gas with the surface of the tube). Thus, the gas
adsorbed in the second layer would appear to be thermo-

dynamically unstable. Adsorption isotherms are observed
for the adsorption of He and Ne on (15, 15) nanotubes,
implying that condensation is prohibited. Capillary conden-
sation occurs when each pore is large enough to hold more
than four layers of molecules. Our approach was validated
by comparing them with the experimental results for Ne
adsorption [40] and molecular simulation results for the Xe/
Ar mixture [32].

Fig. 2 a–c He and Ne adsorption isotherms measured at 4 K for a
inner, b outer, and c total gravimetric storage capacities on the (15, 15)
nanotube

Fig. 3 a–c He adsorption isotherms measured at various temperatures
for a inner, b outer, and c total gravimetric storage capacities on the
(15, 15) nanotube

788 J Mol Model (2011) 17:785–794



The adsorption isotherms for an equimolar He and Ne
mixture are plotted in separate figure (Fig. 2) at 4 K as a
function of pressure. It is clear that the magnitude of ρW
for He gas fluctuates greatly from 0.55 wt% at 4 K to
0.125 wt% at 40, 77, and 130 K, and so parabolic behavior

is not readily apparent for 40, 77 and 130 K. Thus, ρW was
drawn in two separate diagrams.

Both the He and the Ne adsorption isotherms exhibit
similar behavior, and the amount of He and Ne adsorbed on
the inner surface of SWCNT is slightly more than that
adsorbed on the outside. The accessible volume inside the
tube is large because greater penetration is possible closer
to the solid–fluid boundary due to the deeper solid–fluid
potentials. It was shown that confinement in the inner
volume of the nanotube is energetically more favorable
than it is on the external surface. The optimum distances
between the gas molecules (O2, N2 and NO) and the tube
on its outer surface were found in previously published
papers [43, 44] using DFT calculations, in order to show
how the gas molecules were adsorbed onto the outer
surface. Therefore, all of the gas molecules that were
located in this region were considered to be adsorbed. If we
compare the amounts of He and Ne adsorbed, Fig. 2 shows
that more Ne is adsorbed than He for the pressure range
specified. This is due to the fact that the gas molecules can
vary considerably in size, physical properties (boiling
point), structure, and electric properties (dipole and quad-
rupole moments). Hence, Ne adsorption is higher than He
adsorption for the same conditions. The adsorption iso-
therms obtained for an equimolar mixture of He and Ne at
different temperatures (40, 77, and 130 K) for the inner,
outer, and total gravimetric storage capacities are shown in
Figs. 3 and 4. These figures show that the ρW values of He
and Ne increase with increasing gas pressure. Also, with
increasing temperature, the amount of gas adsorbed
increases. Similar to Fig. 2, Figs. 3 and 4 show that more
Ne is adsorbed than He. According to Figs. 3 and 4, the
(15, 15) SWCNT also shows preferential adsorption of Ne
rather than the smaller noble gas He.

Figure 5a shows the phase diagram for a mixture of He
and Ne at 4 K and 0.2 MPa. This figure plots xHe , the He
composition of the adsorbed phase, as a function of yHe , the
He composition in the bulk. The phase diagrams for two
isobars, 1.0 MPa at 4 K and 0.2 MPa at 40 K, are also given
in Figs. 6a and 7a. Figure 5b shows the adsorption isotherms
for a He and Ne mixture at 4 K and 0.2 MPa as a function
of yHe. The amount of He adsorbed increases monotonically
with increasing yHe, and that for Ne decreases monotonically.
In addition, similar to Fig. 5b, Figs. 6b and 7b show the
adsorption isotherms for a He and Ne mixture at 4 K and
1.0 MPa and 40 k and 0.2 MPa as a function of yHe. There is
a monotonic increase in the adsorbed He but a monotonic
decrease in Ne with increasing yHe . Comparing the
adsorption isotherms shown in Figs. 5b, 6b, and 7b, as it
can be seen that the adsorption of He increases with
increasing pressure at constant temperature (see Figs. 5b
and 6b), while the adsorption of He decreases with
increasing temperature at constant pressure (see Figs. 5b

Fig. 4 a–c Ne adsorption isotherms measured at various temperatures
for a inner, b outer, and c total gravimetric storage capacity on the (15,
15) nanotube
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and 7b). As result, increasing pressure and increasing
temperature have opposite effects on the adsorption of He.

Separation factors

To gain better insight into the separation, we analyzed the
effects of pressure and temperature on the selectivity. In a
mixture adsorption, the selectivity (or separation factor) of
component i with respect to j is defined by Sij,

Sij ¼ xi=yi
xj=yj

; ð5Þ

where xi and yi are the compositions of component i in
the adsorbed and bulk phases, respectively.

Selectivity is a key parameter for quantifying the
competitive adsorption between two components. When
Sij > 1, component i is preferentially adsorbed; in contrast,
if Sij < 1, component j is preferentially adsorbed. Of course,

Sij=1 implies that there is no competition; this is the
isoselective point (ISP) at which there is a reversal in
selectivity from Sij > 1 to Sij < 1 or vice versa.

Separation factors depend upon the nature of the
adsorbate–adsorbent interactions; that is, on whether the
surface is polar, nonpolar, hydrophilic, hydrophobic, etc.,
and on the process conditions used, such as temperature,
pressure, and concentration. To achieve a practical separa-
tion based on kinetics, the size of the adsorbent micropores
must be comparable with the dimensions of the diffusing
adsorbate molecules.

Figure 8 shows the selectivity of Ne compared to He,
SNe/He, as a function of the bulk composition of Ne. First we
analyzed the effect of pressure on the separation factor at
constant temperature. As shown in Fig. 8a, the separation
factors at two different pressures (0.2 and 1.0 MPa) and a
constant temperature (4 K) show different behaviors. At
low pressure (0.2 MPa), the selectivity drops with increas-
ing gas bulk composition until yNe=0.2 (20% of the gas

Fig. 6 a–b Adsorption of a He and Ne mixture inside nanotubes at
4 K and P=1 MPa as a function of the He bulk composition. a He
composition in the adsorbed phase; b average number of adsorbed gas
molecules

Fig. 5 a–b Adsorption of a He and Ne mixture inside nanotubes at
4 K and P=0.2 MPa as a function of the He bulk composition. a He
composition in the adsorbed phase; b average number of adsorbed gas
molecules
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bulk is Ne and 80% is He). At a lower gas bulk of Ne, the
selectivity is less than 1, and hence He is preferentially
adsorbed. Furthermore, at a higher pressure (1.0 MPa), as
the gas bulk composition increases, the selectivity reaches a
maximum until yNe=0.3 (30% of the gas bulk is Ne and
70% is He). In other words, preferential adsorption of Ne
occurs at this composition. According to Fig. 8a, the gas
bulk composition shows isoselective point behavior for
yNe=0.3 to 0.6. Comparing the results for the two pressures
shows that the selectivities are largely dependent on the
bulk gas composition. Preferential adsorption of Ne and He
occurs at a gas bulk composition of less than yNe=0.3 and
more than yNe=0.7. Our simulation results for the separa-
tion factor are in agreement with the molecular simulation
results for the adsorption and separation of noble gases in
metal–organic frameworks [32].

Second, the effect of temperature (4 and 40 K) on the
selectivity of Ne compared to He (Fig. 8b) at a constant
pressure (0.2 MPa) was investigated. As can be seen in
Fig. 8b, at a higher temperature (40 K), the selectivity of Ne

increases with increasing gas bulk composition until it
reaches a maximum at yNe=0.55 (55% of the gas bulk is Ne
and 45% is He). After this maximum, the selectivity
decreases with increasing gas bulk composition. As the
results show, at a higher temperature, the separation factors
occur in the range of yNe=0.3 to yNe=0.65 of the bulk
composition; at a lower temperature, separation does not
occur in this range of gas bulk compositions. In other
words, the preferential adsorption of Ne is dependent on the
bulk gas composition (yNe=0.3 to yNe=0.65) at the higher
temperature (40 K). In contrast, at the lower temperature
(4 K), the selectivity is independent of the bulk gas
composition. The selectivity of Ne is higher than that of
He due to the adsorbate–adsorbate interactions. In other
words, Ne–Ne interactions are stronger than He–He
interactions, which means that the ratio εNe/εHe is larger
than the ratio εHe/εNe.

Isosteric enthalpy

Calculating the isosteric enthalpies of adsorption for a
specific surface coverage requires accurate interpolation

Fig. 8 a–b Selectivity of Ne compared to He as a function of the Ne
bulk composition at a T=4 K, and b P=0.2 MPa

Fig. 7 a–b Adsorption of a He and Ne mixture inside nanotubes at
40 K and P=0.2 MPa as a function of the He bulk composition. a He
composition in the adsorbed phase; b average number of adsorbed gas
molecules
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between isotherm points to obtain the pressures for specific
surface coverages for isotherms obtained at various temper-
atures, and this requires the use of isotherm models. The
most appropriate model to use depends on the shape of the
isotherm. Limited heat data is generally available for pure
gas adsorption, heat data for binary gas mixtures are rare,
and heat data for mixtures containing three or more
components are nonexistent.

In this research work, we obtained isosteric enthalpies of
adsorption (coverage-dependent isosteric heats of adsorp-
tion) by fitting the adsorption data. To extract the isosteric
enthalpies of adsorption, the data were modeled with a
virial-type expression consisting of the parameters ai and bi
that are independent of temperature [53]:

lnP ¼ lnN þ 1

T

Xm
i¼0

aiN
i þ

Xn
i¼0

biN
i; ð6Þ

where P is the pressure, N is the amount adsorbed, T is
the temperature, and m and n determine the number of
terms required to adequately describe the isotherm.
Aspects of this equation and its use to study CH4, CF4,
SF6, and H2 adsorbed on activated carbon [54, 55] and H2

[19], and D2 [56] adsorbed on a metal–organic framework
(MOF) have been previously described. To fit the data, the
Mathematica 8 software package was used, and the
successive terms used in all cases were m≤5 and n≤3.
The isosteric enthalpy of adsorption (Qst) was obtained
using the following equation:

Qst ¼ �R
Xm
i¼0

aiN
i; ð7Þ

where R is the gas constant. The quantity Qst is the heat
of compression arising from the transformation of a gas of
finite volume into an adsorbed layer of essentially zero
volume.

The isosteric enthalpy of adsorption (Qst) for a gas
adsorbed on the inner surface of the tube was calculated by
fitting the 4, 40, 77, and 130 K isotherm adsorption data
presented graphically in Fig. 9.

Figure 9 shows the isosteric enthalpies of adsorption of
He and Ne as a function of the amount of gas adsorbed.
Similar to the adsorption isotherms and separation factors,
Qst for Ne is larger than that for He under identical
conditions. The isosteric enthalpies of adsorption for He
and Ne show gradual, near-linear decreases in their values
as a function of the amount of gas adsorbed. Such behavior
has been observed experimentally, for example in the
adsorption of H2 on an MOF [19]. The decrease in Qst

results from additional admolecules having to occupy an
energetically less favorable adsorption region, leading to a
weaker adsorbate–adsorbent attraction, and a weaker

adsorbate-adsorbate attraction due to the shorter distance
between the admolecules in the limited space available
[29].

The behavior of Qst with temperature is quite interesting.
A modest maximum Qst was observed at the lower
temperature (4 K) and a minimum Qst at the higher
temperature (130 K) for both He and Ne. The results
obtained for Qst are in agreement with a theoretical study of
Ar adsorption onto carbon nanotubes [56] at <200 K. The
distribution of adsorbate is governed by the Boltzmann
factor, exp(−E/kT). At a low temperature, the higher energy
adsorption sites are preferentially filled (more thermodynam-
ic work done by the adsorption process [57]). The lower
energy sites are preferentially filled at a high temperature. In
addition, as the amount of adsorbate increases, the distance
between the adsorbates decreases. Lateral interactions
become increasingly likely, and these can influence Qst,
leading to changes as a function of the amount of adsorbate.
Comparative studies reveal that, under identical conditions,

Fig. 9 a–b Variation of the isosteric enthalpy of adsorption
(Qst/J mol−1) with the amount of gas adsorbed (mg g−1) inside
nanotubes at different temperatures. a He; b Ne
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the isosteric enthalpy of adsorption of Ne obtained from
fitting is higher than that of He (see Fig. 9a and b). This
means that the adsorbate–adsorbate interactions are more
important for Ne. The data obtained from the adsorption
isotherms are in good agreement with the results obtained for
the isosteric enthalpies of adsorption.

Conclusions

In this paper, we showed that CMC simulation is a useful
tool for studying the microscopic adsorptive behavior of
helium and neon mixtures on carbon nanotubes. We
considered the adsorption of helium and neon on both the
inner and outer surfaces of the tubes at different temper-
atures (4, 40, 77, and 130 K) for the pressure range of 1–
16 MPa. All of the adsorption isotherms obtained were of
type I at both subcritical and supercritical temperatures. The
adsorption isotherms also show that more gas is always
adsorbed on the inner surfaces of the tubes rather than the
outer surfaces. Comparisons of the adsorption isotherms of
He and Ne mixtures indicate that there are significant
differences between the isotherms. In the pressure range
studied, more Ne was adsorbed than He. Competitive
adsorption occurs in gas mixtures because of size differ-
ences between the components. The results for the
separation factors show that the selectivities are largely
dependent on the bulk gas composition. As the results
show, there is a preference for Ne adsorption rather than He
adsorption from a Ne/He mixture at most bulk composi-
tions because the adsorbate–adsorbate interactions of Ne
are stronger than those of He. In addition, the isosteric
enthalpies of adsorption for He and Ne showed gradual,
near-linear decreases in their values as a function of the
amount of gas adsorbed. Similar to the adsorption iso-
therms and separation factors, Qst of Ne is larger than that
of He under identical conditions.
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